-
⑀
U+2440
OCR钩 -
⑁
U+2441
OCR主席 -
⑂
U+2442
OCR叉 -
⑃
U+2443
OCR倒叉 -
⑄
U+2444
OCR皮带扣 -
⑅
U+2445
OCR领结 -
⑆
U+2446
OCR分行标识 -
⑇
U+2447
OCR支票金额 -
⑈
U+2448
OCR破折号 -
⑉
U+2449
OCR客户帐号 -
⑊
U+244A
OCR双反斜杠
识别过程是:
图像输入、图像前处理、预识别:
图像输入:对于不同的图像格式,有着不同的存储格式,不同的压缩方式,当前有OpenCV、CxImage等开源项目。
预处理:主要包括二值化,噪声去除,倾斜校正等。
二值化:
对摄像头拍摄的图片,大多数是彩色图像,彩色图像所含信息量巨大,对于图片的内容,我们可以简单的分为前景与背景,为了让计算机更快的、更好地识别文字,我们需要先对彩色图进行处理,使图片只剩下前景信息与背景信息,可以简单的定义前景信息为黑色,背景信息为白色,这就是二值化图。
噪声去除:
对于不同的文档,我们对噪声的定义可以不同,根据噪声的特征进行去噪,就叫做噪声去除。
倾斜校正:
由于一般用户,在拍照文档时,都比较随意,因此拍照出来的图片不可避免的产生倾斜,这就需要文字识别软件进行较正。
版面分析:
将文档图片分段落,分行的过程就叫做版面分析,由于实际文档的多样性,复杂性,因此,当前还没有一个固定的,最优的切割模型。
字符切割:
由于拍照条件的限制,经常造成字符粘连,断笔,因此极大限制了识别系统的性能。
字符识别:
这一研究已经是很早的事情了,比较早有模板匹配,后来以特征提取为主,由于文字的位移,笔画的粗细,断笔,粘连,旋转等因素的影响,极大影响特征的提取的难度。
版面还原:
人们希望识别后的文字,仍然像原文档图片那样排列着,段落不变,位置不变,顺序不变地输出到Word文档、PDF文档等,这一过程就叫做版面还原。
后处理、校对:
根据特定的语言上下文的关系,对识别结果进行校正,就是后处理。